基于CNN机翼气动系数预测 | |
吕召阳; 聂雪媛![]() ![]() | |
Source Publication | 北京航空航天大学学报
![]() |
2021-09-15 | |
Volume | 49Issue:03Pages:674-680 |
ISSN | 1001-5965 |
Abstract | 随着机器学习的快速发展和其突出的非线性映射能力,越来越多的学者将机器学习方法应用到流体力学领域。为克服传统数学拟合不能很好的解决系统非线性问题,以及现有文献中所提及的一些基于神经网络的气动参数预测方法,需要进行参数化处理而带来的不便,同时为实现多变量多输出气动参数快速预测的目的,基于卷积神经网络考虑机翼变迎角和浮沉建立了一种多变量多输出的机翼气动参数预测模型,实现了机翼气动参数的快速预测。结果表明:所建模型具有较高且稳定的预测精度,并且计算效率较计算流体力学(CFD)提高了40倍。 |
Keyword | 卷积神经网络 机器学习 气动参数预测 气动降阶 深度学习 |
Indexed By | EI ; CSCD |
Language | 中文 |
CSCD ID | CSCD:7445208 |
Ranking | 1 |
Contributor | 聂雪媛 |
Citation statistics |
Cited Times:5[CSCD]
[CSCD Record]
|
Document Type | 期刊论文 |
Identifier | http://dspace.imech.ac.cn/handle/311007/92456 |
Collection | 流固耦合系统力学重点实验室 |
Affiliation | 1.中国科学院力学研究所 2.中国科学院大学工程科学学院 |
Recommended Citation GB/T 7714 | 吕召阳,聂雪媛,赵奥博. 基于CNN机翼气动系数预测[J]. 北京航空航天大学学报,2021,49,03,:674-680.Rp_Au:聂雪媛 |
APA | 吕召阳,聂雪媛,&赵奥博.(2021).基于CNN机翼气动系数预测.北京航空航天大学学报,49(03),674-680. |
MLA | 吕召阳,et al."基于CNN机翼气动系数预测".北京航空航天大学学报 49.03(2021):674-680. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
JpC2023F061.pdf(1665KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment