Combining direct and indirect sparse data for learning generalizable turbulence models | |
Zhang XL(张鑫磊); Xiao, Heng; Luo, Xiaodong; He GW(何国威)![]() | |
发表期刊 | JOURNAL OF COMPUTATIONAL PHYSICS
![]() |
2023-09-15 | |
卷号 | 489页码:112272 |
ISSN | 0021-9991 |
摘要 | Learning turbulence models from observation data is of significant interest in discovering a unified model for a broad range of practical flow applications. Either the direct observation of Reynolds stress or the indirect observation of velocity has been used to improve the predictive capacity of turbulence models. In this work, we propose combining the direct and indirect sparse data to train neural network-based turbulence models. The backpropagation technique and the observation augmentation approach are used to train turbulence models with different observation data in a unified ensemble-based framework. These two types of observation data can explore synergy to constrain the model training in different observation spaces, which enables learning generalizable models from very sparse data. The present method is tested in secondary flows in a square duct and separated flows over periodic hills. Both cases demonstrate that combining direct and indirect observations is able to improve the generalizability of the learned model in similar flow configurations, compared to using only indirect data. The ensemble-based method can serve as a practical tool for model learning from different types of observations due to its non-intrusive and derivative-free nature. |
关键词 | Ensemble Kalman method Turbulence modeling Direct data Indirect data |
DOI | 10.1016/j.jcp.2023.112272 |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS记录号 | WOS:001028900500001 |
WOS研究方向 | Computer Science ; Physics |
WOS类目 | Computer Science, Interdisciplinary Applications ; Physics, Mathematical |
项目资助者 | NSFC Basic Science Center Program for Multiscale Problems in Nonlinear Mechanics [11988102] ; National Natural Science Foundation of China [12102435] ; China Postdoctoral Science Foundation [2021M690154] ; Research Council of Norway [331644] ; National Centre for Sustainable Subsurface Utilization of the Norwegian Continental Shelf, Norway - Research Council of Norway ; [NCS2030] |
论文分区 | 一类/力学重要期刊 |
力学所作者排名 | 1 |
RpAuthor | He, GW (corresponding author), Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China. ; He, GW (corresponding author), Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China. ; Xiao, H (corresponding author), Univ Stuttgart, Stuttgart Ctr Simulat Sci SC SimTech, D-70569 Stuttgart, Germany. |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://dspace.imech.ac.cn/handle/311007/92554 |
专题 | 非线性力学国家重点实验室 |
作者单位 | 1.{Zhang, Xin-Lei, He, Guowei} Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China 2.{Zhang, Xin-Lei, He, Guowei} Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China 3.{Xiao, Heng} Univ Stuttgart, Stuttgart Ctr Simulat Sci SC SimTech, D-70569 Stuttgart, Germany 4.{Luo, Xiaodong} Norwegian Res Ctr NORCE, N-5008 Bergen, Norway |
推荐引用方式 GB/T 7714 | Zhang XL,Xiao, Heng,Luo, Xiaodong,et al. Combining direct and indirect sparse data for learning generalizable turbulence models[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2023,489:112272.Rp_Au:He, GW (corresponding author), Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China., He, GW (corresponding author), Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China., Xiao, H (corresponding author), Univ Stuttgart, Stuttgart Ctr Simulat Sci SC SimTech, D-70569 Stuttgart, Germany. |
APA | 张鑫磊,Xiao, Heng,Luo, Xiaodong,&何国威.(2023).Combining direct and indirect sparse data for learning generalizable turbulence models.JOURNAL OF COMPUTATIONAL PHYSICS,489,112272. |
MLA | 张鑫磊,et al."Combining direct and indirect sparse data for learning generalizable turbulence models".JOURNAL OF COMPUTATIONAL PHYSICS 489(2023):112272. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Jp2023A245.pdf(7111KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论