IMECH-IR  > 微重力重点实验室
Rapid parameter estimation for merging massive black hole binaries using continuous normalizing flows
Liang, Bo; Du MH(杜明辉); Wang, He; Xu YX(许宇翔); Liu, Chang; Wei XT(魏晓通); Xu P(徐鹏); Qiang, Lie; Luo ZR(罗子人)
Source PublicationMACHINE LEARNING-SCIENCE AND TECHNOLOGY
2024-12
Volume5Issue:4Pages:45040
AbstractDetecting the coalescences of massive black hole binaries (MBHBs) is one of the primary targets for space-based gravitational wave observatories such as laser interferometer space antenna, Taiji, and Tianqin. The fast and accurate parameter estimation of merging MBHBs is of great significance for the global fitting of all resolvable sources, as well as the astrophysical interpretation of gravitational wave signals. However, such analyses usually entail significant computational costs. To address these challenges, inspired by the latest progress in generative models, we explore the application of continuous normalizing flows (CNFs) on the parameter estimation of MBHBs. Specifically, we employ linear interpolation and trig interpolation methods to construct transport paths for training CNFs. Additionally, we creatively introduce a parameter transformation method based on the symmetry in the detector's response function. This transformation is integrated within CNFs, allowing us to train the model using a simplified dataset, and then perform parameter estimation on more general data, hence also acting as a crucial factor in improving the training speed. In conclusion, for the first time, within a comprehensive and reasonable parameter range, we have achieved a complete and unbiased 11-dimensional rapid inference for MBHBs in the presence of astrophysical confusion noise using CNFs. In the experiments based on simulated data, our model produces posterior distributions comparable to those obtained by nested sampling.
Keywordgravitational wave massive black hole binaries continuous normalizing flows flow matching
DOI10.1088/2632-2153/ad8da9
Indexed BySCI ; EI
Language英语
WOS IDWOS:001354502000001
WOS Research AreaComputer Science ; Science & Technology - Other Topics
WOS SubjectComputer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Multidisciplinary Sciences
Funding OrganizationInternational Partnership Program of the Chinese Academy of Sciences ; National Key Research and Development Program of China {2021YFC2201901, 2021YFC2203004, 2020YFC2200100, 2021YFC2201903]${025GJHZ2023106GC]
Classification二类/Q1
Ranking1
ContributorDu MH ; Wang H
Citation statistics
Document Type期刊论文
Identifierhttp://dspace.imech.ac.cn/handle/311007/97161
Collection微重力重点实验室
Affiliation1.【Liang, Bo & Du, Minghui & Xu, Yuxiang & Wei, Xiaotong & Xu, Peng & Luo, Ziren】 Chinese Acad Sci, Inst Mech, Ctr Gravitat Wave Expt, Natl Micrograv Lab, Beijing 100190, Peoples R China
2.【Liang, Bo & Xu, Yuxiang & Xu, Peng & Luo, Ziren】 UCAS, Hangzhou Inst Adv Study, Key Lab Gravitat Wave Precis Measurement Zhejiang, Hangzhou 310024, Peoples R China
3.【Liang, Bo & Xu, Yuxiang】 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
4.【Liang, Bo & Wang, He & Xu, Yuxiang & Xu, Peng & Luo, Ziren】 Univ Chinese Acad Sci UCAS, Taiji Lab Gravitat Wave Univ Beijing Hangzhou, Beijing 100049, Peoples R China
5.【Xu, Peng】 Lanzhou Univ, Lanzhou Ctr Theoret Phys, Lanzhou 730000, Peoples R China
6.【Wang, He & Luo, Ziren】 Univ Chinese Acad Sci UCAS, Int Ctr Theoret Phys Asia Pacific ICTP AP, Beijing 100049, Peoples R China
7.【Liu, Chang & Qiang, Li-e】 Chinese Acad Sci, Natl Space Sci Ctr, Beijing 100190, Peoples R China
Recommended Citation
GB/T 7714
Liang, Bo,Du MH,Wang, He,et al. Rapid parameter estimation for merging massive black hole binaries using continuous normalizing flows[J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY,2024,5,4,:45040.Rp_Au:Du MH, Wang H
APA Liang, Bo.,杜明辉.,Wang, He.,许宇翔.,Liu, Chang.,...&罗子人.(2024).Rapid parameter estimation for merging massive black hole binaries using continuous normalizing flows.MACHINE LEARNING-SCIENCE AND TECHNOLOGY,5(4),45040.
MLA Liang, Bo,et al."Rapid parameter estimation for merging massive black hole binaries using continuous normalizing flows".MACHINE LEARNING-SCIENCE AND TECHNOLOGY 5.4(2024):45040.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Lanfanshu
Similar articles in Lanfanshu
[Liang, Bo]'s Articles
[杜明辉]'s Articles
[Wang, He]'s Articles
Baidu academic
Similar articles in Baidu academic
[Liang, Bo]'s Articles
[杜明辉]'s Articles
[Wang, He]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Liang, Bo]'s Articles
[杜明辉]'s Articles
[Wang, He]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.