Rapid parameter estimation for merging massive black hole binaries using continuous normalizing flows | |
Liang, Bo; Du MH(杜明辉); Wang, He; Xu YX(许宇翔); Liu, Chang; Wei XT(魏晓通); Xu P(徐鹏); Qiang, Lie; Luo ZR(罗子人) | |
Source Publication | MACHINE LEARNING-SCIENCE AND TECHNOLOGY |
2024-12 | |
Volume | 5Issue:4Pages:45040 |
Abstract | Detecting the coalescences of massive black hole binaries (MBHBs) is one of the primary targets for space-based gravitational wave observatories such as laser interferometer space antenna, Taiji, and Tianqin. The fast and accurate parameter estimation of merging MBHBs is of great significance for the global fitting of all resolvable sources, as well as the astrophysical interpretation of gravitational wave signals. However, such analyses usually entail significant computational costs. To address these challenges, inspired by the latest progress in generative models, we explore the application of continuous normalizing flows (CNFs) on the parameter estimation of MBHBs. Specifically, we employ linear interpolation and trig interpolation methods to construct transport paths for training CNFs. Additionally, we creatively introduce a parameter transformation method based on the symmetry in the detector's response function. This transformation is integrated within CNFs, allowing us to train the model using a simplified dataset, and then perform parameter estimation on more general data, hence also acting as a crucial factor in improving the training speed. In conclusion, for the first time, within a comprehensive and reasonable parameter range, we have achieved a complete and unbiased 11-dimensional rapid inference for MBHBs in the presence of astrophysical confusion noise using CNFs. In the experiments based on simulated data, our model produces posterior distributions comparable to those obtained by nested sampling. |
Keyword | gravitational wave massive black hole binaries continuous normalizing flows flow matching |
DOI | 10.1088/2632-2153/ad8da9 |
Indexed By | SCI ; EI |
Language | 英语 |
WOS ID | WOS:001354502000001 |
WOS Research Area | Computer Science ; Science & Technology - Other Topics |
WOS Subject | Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Multidisciplinary Sciences |
Funding Organization | International Partnership Program of the Chinese Academy of Sciences ; National Key Research and Development Program of China {2021YFC2201901, 2021YFC2203004, 2020YFC2200100, 2021YFC2201903]${025GJHZ2023106GC] |
Classification | 二类/Q1 |
Ranking | 1 |
Contributor | Du MH ; Wang H |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://dspace.imech.ac.cn/handle/311007/97161 |
Collection | 微重力重点实验室 |
Affiliation | 1.【Liang, Bo & Du, Minghui & Xu, Yuxiang & Wei, Xiaotong & Xu, Peng & Luo, Ziren】 Chinese Acad Sci, Inst Mech, Ctr Gravitat Wave Expt, Natl Micrograv Lab, Beijing 100190, Peoples R China 2.【Liang, Bo & Xu, Yuxiang & Xu, Peng & Luo, Ziren】 UCAS, Hangzhou Inst Adv Study, Key Lab Gravitat Wave Precis Measurement Zhejiang, Hangzhou 310024, Peoples R China 3.【Liang, Bo & Xu, Yuxiang】 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China 4.【Liang, Bo & Wang, He & Xu, Yuxiang & Xu, Peng & Luo, Ziren】 Univ Chinese Acad Sci UCAS, Taiji Lab Gravitat Wave Univ Beijing Hangzhou, Beijing 100049, Peoples R China 5.【Xu, Peng】 Lanzhou Univ, Lanzhou Ctr Theoret Phys, Lanzhou 730000, Peoples R China 6.【Wang, He & Luo, Ziren】 Univ Chinese Acad Sci UCAS, Int Ctr Theoret Phys Asia Pacific ICTP AP, Beijing 100049, Peoples R China 7.【Liu, Chang & Qiang, Li-e】 Chinese Acad Sci, Natl Space Sci Ctr, Beijing 100190, Peoples R China |
Recommended Citation GB/T 7714 | Liang, Bo,Du MH,Wang, He,et al. Rapid parameter estimation for merging massive black hole binaries using continuous normalizing flows[J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY,2024,5,4,:45040.Rp_Au:Du MH, Wang H |
APA | Liang, Bo.,杜明辉.,Wang, He.,许宇翔.,Liu, Chang.,...&罗子人.(2024).Rapid parameter estimation for merging massive black hole binaries using continuous normalizing flows.MACHINE LEARNING-SCIENCE AND TECHNOLOGY,5(4),45040. |
MLA | Liang, Bo,et al."Rapid parameter estimation for merging massive black hole binaries using continuous normalizing flows".MACHINE LEARNING-SCIENCE AND TECHNOLOGY 5.4(2024):45040. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment