IMECH-IR  > 非线性力学国家重点实验室
Fatigue Short Crack Growth Prediction of Additively Manufactured Alloy Based on Ensemble Learning
Huang QH(黄庆辉)1,2; Hu, Dianyin3; Wang, Rongqiao3; Sergeichev, Ivan4; Sun JY(孙经雨)1; Qian GA(钱桂安)1
通讯作者Qian, Guian([email protected])
发表期刊FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES
2025-02-02
页码19
ISSN8756-758X
摘要In situ fatigue crack propagation experiment was conducted on laser cladding with coaxial powder feeding (LCPF) K477 under various stress ratios and temperatures. Multiple crack initiation sites were observed by using in situ scanning electron microscopy (SEM). The fatigue short crack growth rate was measured, and the impacts of temperature and stress ratio on this growth rate were analyzed. Based on these experiments, the experimental data were expanded, and three ensemble learning algorithms, that is, random forest (RF), extreme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM), were employed to establish a fatigue short crack growth rate model controlled by multiple parameters. It is indicated that the RF model performs the best, achieving a coefficient of determination (R2) of up to 0.88. The fatigue life predicted by the machine learning (ML) method agrees well with the experimental one.
关键词ensemble learning fatigue life interpolation multiple crack initiation short crack growth rate
DOI10.1111/ffe.14573
收录类别SCI ; EI
语种英语
WOS记录号WOS:001410730100001
关键词[WOS]METALLIC MATERIALS ; LIFE PREDICTION ; PROPAGATION ; CLOSURE
WOS研究方向Engineering ; Materials Science
WOS类目Engineering, Mechanical ; Materials Science, Multidisciplinary
资助项目National Natural Science Foundation of China ; International Partnership Program for Grand Challenges of Chinese Academy of Sciences[025GJHZ2023092GC] ; Science Center for Gas Turbine Project[P2022-B-III-008-001] ; National Science and Technology Major Project[J2019-IV-0009-0077] ; National Science and Technology Major Project[Y2022-IV-0002-0019] ; [12072345] ; [11932020]
项目资助者National Natural Science Foundation of China ; International Partnership Program for Grand Challenges of Chinese Academy of Sciences ; Science Center for Gas Turbine Project ; National Science and Technology Major Project
论文分区二类
力学所作者排名1
RpAuthorQian, Guian
引用统计
文献类型期刊论文
条目标识符http://dspace.imech.ac.cn/handle/311007/98292
专题非线性力学国家重点实验室
作者单位1.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech LNM, Beijing, Peoples R China;
2.Univ Chinese Acad Sci, Sch Engn Sci, Beijing, Peoples R China;
3.Beihang Univ, Res Inst Aeroengine, Beijing, Peoples R China;
4.Skolkovo Inst Sci & Technol, Ctr Mat Technol, Moscow, Russia
推荐引用方式
GB/T 7714
Huang QH,Hu, Dianyin,Wang, Rongqiao,et al. Fatigue Short Crack Growth Prediction of Additively Manufactured Alloy Based on Ensemble Learning[J]. FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES,2025:19.Rp_Au:Qian, Guian
APA 黄庆辉,Hu, Dianyin,Wang, Rongqiao,Sergeichev, Ivan,孙经雨,&钱桂安.(2025).Fatigue Short Crack Growth Prediction of Additively Manufactured Alloy Based on Ensemble Learning.FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES,19.
MLA 黄庆辉,et al."Fatigue Short Crack Growth Prediction of Additively Manufactured Alloy Based on Ensemble Learning".FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES (2025):19.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
Lanfanshu学术
Lanfanshu学术中相似的文章
[黄庆辉]的文章
[Hu, Dianyin]的文章
[Wang, Rongqiao]的文章
百度学术
百度学术中相似的文章
[黄庆辉]的文章
[Hu, Dianyin]的文章
[Wang, Rongqiao]的文章
必应学术
必应学术中相似的文章
[黄庆辉]的文章
[Hu, Dianyin]的文章
[Wang, Rongqiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。