| Shallow Water Model On Cubed-Sphere By Multi-Moment Finite Volume Method |
| Chen CG(陈春刚) ; Xiao F(肖锋) ; Xiao, F (reprint author), Chinese Acad Sci, DES LHD, Inst Mech, 15 Beisihuanxi Rd, Beijing 100080, Peoples R China.
|
Source Publication | Journal of Computational Physics
(IF:2.845[JCR-2018],3.321[5-Year]) |
| 2008
|
Pages | 5019-5044 |
ISSN | 0021-9991
|
Abstract | A global numerical model for shallow water flows on the cubed-sphere grid is proposed in this paper. The model is constructed by using the constrained interpolation profile/multi-moment finite volume method (CIP/MM FVM). Two kinds of moments, i.e. the point value (PV) and the volume-integrated average (VIA) are defined and independently updated in the present model by different numerical formulations. The Lax-Friedrichs upwind splitting is used to update the PV moment in terms of a derivative Riemann problem, and a finite volume formulation derived by integrating the governing equations over each mesh element is used to predict the VIA moment. The cubed-sphere grid is applied to get around the polar singularity and to obtain uniform grid spacing for a spherical geometry. Highly localized reconstruction in CIP/MM FVM is well suited for the cubed-sphere grid, especially in dealing with the discontinuity in the coordinates between different patches. The mass conservation is completely achieved over the whole globe. The numerical model has been verified by Williamson's standard test set for shallow water equation model on sphere. The results reveal that the present model is competitive to most existing ones. (C) 2008 Elsevier Inc. All rights reserved. |
Keyword | Finite Volume Method
Cubed-sphere Grid
Shallow Water Equations
Spherical Geometry
Global Model
High-order Scheme
Geophysical Flows
Semi-lagrangian Advection
Barotropic Vorticity Equation
Discontinuous Galerkin
Incompressible Flows
Unified Formulation
Conservation-laws
Test Set
Integration
Scheme
Transport
|
DOI | 10.1016/j.jcp.2008.01.033
|
Indexed By | SCI
|
Language | 英语
|
WOS ID | WOS:000255447000012
|
WOS Keyword | SEMI-LAGRANGIAN ADVECTION
; BAROTROPIC VORTICITY EQUATION
; DISCONTINUOUS GALERKIN
; INCOMPRESSIBLE FLOWS
; UNIFIED FORMULATION
; CONSERVATION-LAWS
; TEST SET
; INTEGRATION
; SCHEME
; TRANSPORT
|
WOS Research Area | Computer Science
; Physics
|
WOS Subject | Computer Science, Interdisciplinary Applications
; Physics, Mathematical
|
Citation statistics |
|
Document Type | 期刊论文
|
Identifier | http://dspace.imech.ac.cn/handle/311007/26060
|
Collection | 力学所知识产出(1956-2008)
|
Corresponding Author | Xiao, F (reprint author), Chinese Acad Sci, DES LHD, Inst Mech, 15 Beisihuanxi Rd, Beijing 100080, Peoples R China. |
Recommended Citation GB/T 7714 |
Chen CG,Xiao F,Xiao, F . Shallow Water Model On Cubed-Sphere By Multi-Moment Finite Volume Method[J]. Journal of Computational Physics,2008:5019-5044.
|
APA |
陈春刚,肖锋,&Xiao, F .(2008).Shallow Water Model On Cubed-Sphere By Multi-Moment Finite Volume Method.Journal of Computational Physics,5019-5044.
|
MLA |
陈春刚,et al."Shallow Water Model On Cubed-Sphere By Multi-Moment Finite Volume Method".Journal of Computational Physics (2008):5019-5044.
|
Edit Comment