任意多面体网格上的欧拉方程数值算法 | |
Alternative Title | Numerical Algorithm of Euler Equations on Arbitrary Polyhedral Grids |
李书杰; 杨国伟 | |
Source Publication | 航空学报 |
2011-01-20 | |
Volume | 32Issue:9Pages:1608-1615 |
ISSN | 1000-6893 |
Abstract | 发展并验证了一种新的支持多面体网格的欧拉方程离散算法,采用Fortran 95编写了支持任意网格拓扑及三维复杂外形的通用求解器。在空间离散上,基于径向基函数理论提出了一种新的梯度计算方法,并采用动能通量分裂格式来得到准确并且稳定的二阶精度重构。该方法不依赖于网格几何形状,因此对网格质量不敏感。由于在时间方向采用了点隐松弛推进方法,使得该求解器在大时间步长上仍能保持稳定性。最后通过若干数值算例对本文所发展的算法进行了验证,证明了本文的算法及求解器具有稳定、准确的特性及宽广的网格类型适应性。 |
Other Abstract | In this paper,a new algorithm for solving Euler equations is developed and validated on polyhedral grids. A general solver which supports arbitrary mesh topology and three-dimensional complex geometry is constructed by using Fortran95 language.For spatial discretization,a new improved radial basis function method is proposed for gradient calculation.An accurate and robust second-order reconstruction is achieved by using Kinetic Flux Vector Splitting scheme.The new method does not depend on the geometry of grid.Thus it is much less sensitive to the grid quality.With a point implicit relaxation time marching strategy,the solver remains stable at large time step.The test cases indicate that the algorithm and the solver developed in this paper are stable,accurate while exhibit good flexibility on mesh universality. |
Keyword | 多面体网格 蜂窝网格 径向基函数 动能通量分裂 非结构 复杂外形 可压缩流动 |
Subject Area | 力学 |
URL | 查看原文 |
Indexed By | EI ; CSCD |
Language | 中文 |
Funding Organization | 中国科学院研究生科技创新与社会实践资助专项(2009)~~ |
CSCD ID | CSCD:4328131 |
Department | LMFS流固耦合与数值计算(LHO) |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://dspace.imech.ac.cn/handle/311007/45202 |
Collection | 高温气体动力学国家重点实验室 |
Corresponding Author | 李书杰 |
Recommended Citation GB/T 7714 | 李书杰,杨国伟. 任意多面体网格上的欧拉方程数值算法[J]. 航空学报,2011,32,9,:1608-1615. |
APA | 李书杰,&杨国伟.(2011).任意多面体网格上的欧拉方程数值算法.航空学报,32(9),1608-1615. |
MLA | 李书杰,et al."任意多面体网格上的欧拉方程数值算法".航空学报 32.9(2011):1608-1615. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
C2011J127.pdf(420KB) | 开放获取 | -- | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment