IMECH-IR  > 非线性力学国家重点实验室
Predicting the components and types of kerogen in shale by combining machine learning with NMR spectra
Kang DL(康东亮)1,2; Wang XH(王晓荷)1,2; Zheng XJ(郑晓骄)1; Zhao YP(赵亚溥)1,2
发表期刊FUEL
2021-04-15
卷号290页码:10
ISSN0016-2361
摘要

This study aims to develop a new method that combines machine learning with nuclear magnetic resonance (NMR) spectra to predict the kemgen components and types. Kerogen is the primary hydrocarbon source of shale oil/gas, and nearly half of the hydrocarbons in shale are adsorbed in kemgen. The adsorption and hydrocarbon generation capacity of kerogen is directly related to its types, molecular components, and structures. Fruitful researches studying kerogen at the molecular level have been conducted. Unfortunately, these methods are complicated, time-consuming, and labor-intensive. Our method has the advantages of high-throughput prediction, high accuracy, and time savings compared with the existing methods. Additionally, this method simplifies the operations from repetitive trial and error. This study proposes a solution to convert non-uniform two-dimensional (2D) graph into a uniform one-dimensional (1D) matrix, which makes 2D graph data available for machine learning models. An automatic labeling platform is constructed that annotated over 22,000 groups of organic matter molecules and their NMR spectra. The results show that the carbon, hydrogen, and oxygen element prediction accuracy reach 96.1%, 94.8%, and 81.7%, respectively. In addition, the accuracy of the three kerogen types is approximately 90% in total. These results reflect the excellent performance of the machine learning method. Therefore, our work provides an automated and intelligent prediction and analysis method, which is a powerful and superior tool in kerogen studies at the molecular level.

关键词Machine learning Kerogen and shale Molecular structure High-throughput prediction NMR spectra datasets
DOI10.1016/j.fuel.2020.120006
收录类别SCI ; EI
语种英语
WOS记录号WOS:000618093600001
WOS研究方向Energy & Fuels ; Engineering
WOS类目Energy & Fuels ; Engineering, Chemical
资助项目National Natural Science Foundation of China (NSFC)[12032019] ; National Natural Science Foundation of China (NSFC)[11872363] ; National Natural Science Foundation of China (NSFC)[51861145314] ; Chinese Academy of Sciences (CAS) Key Research Program of Frontier Sciences[QYZDJ-SSW-JSC019] ; CAS Strategic Priority Research Program[XDB22040401]
项目资助者National Natural Science Foundation of China (NSFC) ; Chinese Academy of Sciences (CAS) Key Research Program of Frontier Sciences ; CAS Strategic Priority Research Program
论文分区一类
力学所作者排名1
RpAuthorZhao, Ya-Pu
引用统计
被引频次:39[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://dspace.imech.ac.cn/handle/311007/86071
专题非线性力学国家重点实验室
通讯作者Zhao YP(赵亚溥)
作者单位1.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China;
2.Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Kang DL,Wang XH,Zheng XJ,et al. Predicting the components and types of kerogen in shale by combining machine learning with NMR spectra[J]. FUEL,2021,290:10.Rp_Au:Zhao, Ya-Pu
APA Kang DL,Wang XH,Zheng XJ,&Zhao YP.(2021).Predicting the components and types of kerogen in shale by combining machine learning with NMR spectra.FUEL,290,10.
MLA Kang DL,et al."Predicting the components and types of kerogen in shale by combining machine learning with NMR spectra".FUEL 290(2021):10.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Jp2021085.pdf(5174KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
Lanfanshu学术
Lanfanshu学术中相似的文章
[Kang DL(康东亮)]的文章
[Wang XH(王晓荷)]的文章
[Zheng XJ(郑晓骄)]的文章
百度学术
百度学术中相似的文章
[Kang DL(康东亮)]的文章
[Wang XH(王晓荷)]的文章
[Zheng XJ(郑晓骄)]的文章
必应学术
必应学术中相似的文章
[Kang DL(康东亮)]的文章
[Wang XH(王晓荷)]的文章
[Zheng XJ(郑晓骄)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Jp2021085.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。