IMECH-IR  > 非线性力学国家重点实验室
Graded honeycombs with high impact resistance through machine learning-based optimization
Gao Y(高洋); Chen XJ(陈贤佳); Wei YJ(魏宇杰)
发表期刊THIN-WALLED STRUCTURES
2023-07
卷号188页码:110794
ISSN0263-8231
摘要Gradient structures with enhanced performance are ubiquitously observed in nature and in engineering materials. In this paper, we studied the impact resistance of two types of broadly used honeycomb structures (HCSs), a hexagonal HCS and an auxetic HCS. We developed a neural network (NN) which could effectively help to find an optimal gradient design for energy absorption of HCSs in contrast with their uniform counterpart. The optimal density gradient for both hexagonal HCS and auxetic HCS was identified, which are 66% and 40% higher in energy absorption than their respective uniform control. Followed finite-element analysis revealed that density gradient of HCSs enables loading transfer among a greater deformation zone, consequentially more cells involving in energy absorption. The initially graded sample promotes a de-gradient process and leads to more homogeneous density; conversely, a uniform sample develops localized deformation when subject to impact loading. Such an equal-load-partition (ELP) strategy in graded HCSs is responsible for their supreme energy absorption. The developed machine learning (ML) method for impact resistance optimization and the revealed deformation mechanisms in graded HCSs would be meaningful for the design of new advanced graded materials.
关键词Graded honeycomb Impact resistance Machine learning Energy absorption Equal-load-partition
DOI10.1016/j.tws.2023.110794
收录类别SCI ; EI
语种英语
WOS记录号WOS:001013005900001
WOS研究方向Engineering, Civil ; Engineering, Mechanical ; Mechanics
项目资助者NSFC Basic Science Center, China [11988102] ; NSFC, China [12202447] ; China Postdoctoral Science Foundation, China [2021M703289]
论文分区一类
力学所作者排名1
RpAuthorWei, YJ (corresponding author), Chinese Acad Sci, Inst Mech, LNM, Beijing 100190, Peoples R China.
引用统计
被引频次:16[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://dspace.imech.ac.cn/handle/311007/92405
专题非线性力学国家重点实验室
作者单位1.{Gao Yang, Chen Xianjia, Wei Yujie} Chinese Acad Sci Inst Mech LNM Beijing 100190 Peoples R China
2.{Wei Yujie} Univ Chinese Acad Sci Sch Engn Sci Beijing 100049 Peoples R China
推荐引用方式
GB/T 7714
Gao Y,Chen XJ,Wei YJ. Graded honeycombs with high impact resistance through machine learning-based optimization[J]. THIN-WALLED STRUCTURES,2023,188:110794.Rp_Au:Wei, YJ (corresponding author), Chinese Acad Sci, Inst Mech, LNM, Beijing 100190, Peoples R China.
APA 高洋,陈贤佳,&魏宇杰.(2023).Graded honeycombs with high impact resistance through machine learning-based optimization.THIN-WALLED STRUCTURES,188,110794.
MLA 高洋,et al."Graded honeycombs with high impact resistance through machine learning-based optimization".THIN-WALLED STRUCTURES 188(2023):110794.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Jp2023Fa272.pdf(5209KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
Lanfanshu学术
Lanfanshu学术中相似的文章
[高洋]的文章
[陈贤佳]的文章
[魏宇杰]的文章
百度学术
百度学术中相似的文章
[高洋]的文章
[陈贤佳]的文章
[魏宇杰]的文章
必应学术
必应学术中相似的文章
[高洋]的文章
[陈贤佳]的文章
[魏宇杰]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Jp2023Fa272.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。