Graded honeycombs with high impact resistance through machine learning-based optimization | |
Gao Y(高洋); Chen XJ(陈贤佳)![]() ![]() | |
发表期刊 | THIN-WALLED STRUCTURES
![]() |
2023-07 | |
卷号 | 188页码:110794 |
ISSN | 0263-8231 |
摘要 | Gradient structures with enhanced performance are ubiquitously observed in nature and in engineering materials. In this paper, we studied the impact resistance of two types of broadly used honeycomb structures (HCSs), a hexagonal HCS and an auxetic HCS. We developed a neural network (NN) which could effectively help to find an optimal gradient design for energy absorption of HCSs in contrast with their uniform counterpart. The optimal density gradient for both hexagonal HCS and auxetic HCS was identified, which are 66% and 40% higher in energy absorption than their respective uniform control. Followed finite-element analysis revealed that density gradient of HCSs enables loading transfer among a greater deformation zone, consequentially more cells involving in energy absorption. The initially graded sample promotes a de-gradient process and leads to more homogeneous density; conversely, a uniform sample develops localized deformation when subject to impact loading. Such an equal-load-partition (ELP) strategy in graded HCSs is responsible for their supreme energy absorption. The developed machine learning (ML) method for impact resistance optimization and the revealed deformation mechanisms in graded HCSs would be meaningful for the design of new advanced graded materials. |
关键词 | Graded honeycomb Impact resistance Machine learning Energy absorption Equal-load-partition |
DOI | 10.1016/j.tws.2023.110794 |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS记录号 | WOS:001013005900001 |
WOS研究方向 | Engineering, Civil ; Engineering, Mechanical ; Mechanics |
项目资助者 | NSFC Basic Science Center, China [11988102] ; NSFC, China [12202447] ; China Postdoctoral Science Foundation, China [2021M703289] |
论文分区 | 一类 |
力学所作者排名 | 1 |
RpAuthor | Wei, YJ (corresponding author), Chinese Acad Sci, Inst Mech, LNM, Beijing 100190, Peoples R China. |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://dspace.imech.ac.cn/handle/311007/92405 |
专题 | 非线性力学国家重点实验室 |
作者单位 | 1.{Gao Yang, Chen Xianjia, Wei Yujie} Chinese Acad Sci Inst Mech LNM Beijing 100190 Peoples R China 2.{Wei Yujie} Univ Chinese Acad Sci Sch Engn Sci Beijing 100049 Peoples R China |
推荐引用方式 GB/T 7714 | Gao Y,Chen XJ,Wei YJ. Graded honeycombs with high impact resistance through machine learning-based optimization[J]. THIN-WALLED STRUCTURES,2023,188:110794.Rp_Au:Wei, YJ (corresponding author), Chinese Acad Sci, Inst Mech, LNM, Beijing 100190, Peoples R China. |
APA | 高洋,陈贤佳,&魏宇杰.(2023).Graded honeycombs with high impact resistance through machine learning-based optimization.THIN-WALLED STRUCTURES,188,110794. |
MLA | 高洋,et al."Graded honeycombs with high impact resistance through machine learning-based optimization".THIN-WALLED STRUCTURES 188(2023):110794. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Jp2023Fa272.pdf(5209KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
Lanfanshu学术 |
Lanfanshu学术中相似的文章 |
[高洋]的文章 |
[陈贤佳]的文章 |
[魏宇杰]的文章 |
百度学术 |
百度学术中相似的文章 |
[高洋]的文章 |
[陈贤佳]的文章 |
[魏宇杰]的文章 |
必应学术 |
必应学术中相似的文章 |
[高洋]的文章 |
[陈贤佳]的文章 |
[魏宇杰]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论