Thermocapillary Convection of Evaporating Thin Nanofluid Layer in a Rectangular Cavity | |
Tao YQ(陶跃群)1![]() ![]() ![]() | |
Corresponding Author | Liu, Qiusheng([email protected]) |
Source Publication | MICROGRAVITY SCIENCE AND TECHNOLOGY
![]() |
2023-09-25 | |
Volume | 35Issue:5Pages:8 |
ISSN | 0938-0108 |
Abstract | Thermocapillary convection of nanofluid with evaporating phase change interface occurs in a variety of industrial processes such as micro/nano fabrication, ink-jet printing, thin film coatings, etc. Previous studies have mostly focused on the phenomena of thermocapillary convection in pure fluids without phase change. This paper reports the first fundamental experimental work on the thermocapillary flow of a thin nanofluid layer under the effect of evaporation. This research focuses on the behavior of a volatile thin nanofluid layer in a rectangular test cell under the effects of horizontal temperature gradient. The buoyancy effect can be neglected inside this thin liquid layer as in microgravity conditions. HEE7200 and HFE7200-Al2O3 nanofluid are used as working fluids to analyze the effect of nanoparticle addition. The results indicate that the linear relationship between the thickness of the liquid layer and the duration of evaporation is not changed by nanoparticles. HFE7200-Al2O3 nanofluid always has a higher evaporation rate than its base fluid with the temperature ranging from 2.98 & DEG;C to 13.92 & DEG;C. The critical Marangoni number for the nanofluid is lower than that of the pure fluid, which indicates that the addition of nanoparticles promotes the flow pattern transition. |
Keyword | Thermocapillary flow Evaporation rate Flow pattern transition Nanofluid |
DOI | 10.1007/s12217-023-10076-7 |
Indexed By | SCI ; EI |
Language | 英语 |
WOS ID | WOS:001070329600001 |
WOS Keyword | MARANGONI CONVECTION ; BUOYANCY CONVECTION ; BENARD CONVECTION ; DRIVEN CONVECTION ; VOLATILE FLUIDS ; LIQUID LAYER ; INSTABILITY ; DEPENDENCE |
WOS Research Area | Engineering ; Thermodynamics ; Mechanics |
WOS Subject | Engineering, Aerospace ; Thermodynamics ; Mechanics |
Funding Project | This work was financially supported by the Bureau of International Cooperation, The Chinese Academy of Sciences (No.115111KYSB2020008), the Science and Technology Innovation 2025 Major Project of Ningbo City (Grant No. 2022Z213), and China Manned Space Pro[115111KYSB2020008] ; Bureau of International Cooperation, The Chinese Academy of Sciences[2022Z213] ; Science and Technology Innovation 2025 Major Project of Ningbo City ; China Manned Space Program |
Funding Organization | This work was financially supported by the Bureau of International Cooperation, The Chinese Academy of Sciences (No.115111KYSB2020008), the Science and Technology Innovation 2025 Major Project of Ningbo City (Grant No. 2022Z213), and China Manned Space Pro ; Bureau of International Cooperation, The Chinese Academy of Sciences ; Science and Technology Innovation 2025 Major Project of Ningbo City ; China Manned Space Program |
Classification | 二类 |
Ranking | 1 |
Contributor | Liu, Qiusheng |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://dspace.imech.ac.cn/handle/311007/92997 |
Collection | 微重力重点实验室 |
Affiliation | 1.Chinese Acad Sci, Natl Micrograv Lab, Inst Mech, Beijing 100190, Peoples R China; 2.Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China |
Recommended Citation GB/T 7714 | Tao YQ,Liu QS,Qin, Jun,et al. Thermocapillary Convection of Evaporating Thin Nanofluid Layer in a Rectangular Cavity[J]. MICROGRAVITY SCIENCE AND TECHNOLOGY,2023,35,5,:8.Rp_Au:Liu, Qiusheng |
APA | 陶跃群,刘秋生,Qin, Jun,&朱志强.(2023).Thermocapillary Convection of Evaporating Thin Nanofluid Layer in a Rectangular Cavity.MICROGRAVITY SCIENCE AND TECHNOLOGY,35(5),8. |
MLA | 陶跃群,et al."Thermocapillary Convection of Evaporating Thin Nanofluid Layer in a Rectangular Cavity".MICROGRAVITY SCIENCE AND TECHNOLOGY 35.5(2023):8. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
Jp2023A203.pdf(1216KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment