IMECH-IR  > 非线性力学国家重点实验室
Error analysis of asymptotic solution of a heavy particle motion equation in fluid flows
Shen CD(申晨冬); Jin GD(晋国栋)
通讯作者Jin, Guodong([email protected])
发表期刊PHYSICS OF FLUIDS
2024-06-01
卷号36期号:6页码:15
ISSN1070-6631
摘要For weakly inertial particles subjected to volumetric forces and Stokes drag force in fluid flows, we can solve the simplified particle motion equation using the perturbation method. This method allows us to obtain a recursive formula for the nth-order correction of the asymptotic solution of particle velocity. We verified the error of the asymptotic solution under two typical flow fields: a time-varying uniform flow field with a volumetric force field and a two-dimensional non-uniform cellular flow field. In the former, the relative error of the asymptotic solution of particle velocity and position increases with the Stokes number, and we provided a quantitative analysis of the results. In the latter, we verify and analyze the asymptotic solution from two perspectives: the behavior of a single particle and the collective behaviors of many particles. For asymptotic solutions with maximum velocity and position errors of less than 5%, we select the solution with the lowest order correction and designate it as the optimal asymptotic solution. The order of the optimal asymptotic solution increases with increasing Stokes numbers and motion durations. However, in most cases, for weakly inertial particles [St similar to O(10(-3))], and the time t* similar to O(10), the first-order asymptotic solution can achieve accuracy, where both St and t* are defined using the flow field characteristic time, T-f = 4 pi s. The results validate the rationale behind utilizing first-order asymptotic solutions in the fast Eulerian method for turbulent dispersion of weakly inertial particles.
DOI10.1063/5.0212553
收录类别SCI ; EI
语种英语
WOS记录号WOS:001244474200004
关键词[WOS]DIRECT NUMERICAL-SIMULATION ; INTERMITTENT DISTRIBUTION ; INERTIAL PARTICLES ; MODEL ; TURBULENCE ; SPHERE
WOS研究方向Mechanics ; Physics
WOS类目Mechanics ; Physics, Fluids & Plasmas
资助项目National Natural Science Foundation of China10.13039/501100001809[11988102] ; NSFC Basic Science Center Program for Multiscale Problems in Nonlinear Mechanics[12272380] ; NSFC Program[GJXM92579] ; National Key Project ; China Manned Space Engineering Program
项目资助者National Natural Science Foundation of China10.13039/501100001809 ; NSFC Basic Science Center Program for Multiscale Problems in Nonlinear Mechanics ; NSFC Program ; National Key Project ; China Manned Space Engineering Program
论文分区一类/力学重要期刊
力学所作者排名1
引用统计
文献类型期刊论文
条目标识符http://dspace.imech.ac.cn/handle/311007/95685
专题非线性力学国家重点实验室
推荐引用方式
GB/T 7714
Shen CD,Jin GD. Error analysis of asymptotic solution of a heavy particle motion equation in fluid flows[J]. PHYSICS OF FLUIDS,2024,36,6,:15.
APA 申晨冬,&晋国栋.(2024).Error analysis of asymptotic solution of a heavy particle motion equation in fluid flows.PHYSICS OF FLUIDS,36(6),15.
MLA 申晨冬,et al."Error analysis of asymptotic solution of a heavy particle motion equation in fluid flows".PHYSICS OF FLUIDS 36.6(2024):15.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
Lanfanshu学术
Lanfanshu学术中相似的文章
[申晨冬]的文章
[晋国栋]的文章
百度学术
百度学术中相似的文章
[申晨冬]的文章
[晋国栋]的文章
必应学术
必应学术中相似的文章
[申晨冬]的文章
[晋国栋]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。