IMECH-IR  > 非线性力学国家重点实验室
Accelerating three-dimensional phase-field simulations via deep learning approaches
Zhou, Xuewei1,2; Sun, Sheng4; Cai SL(蔡松林)6; Chen, Gongyu1; Wu, Honghui3,5; Xiong, Jie4; Zhu, Jiaming1,2,5
通讯作者Wu, Honghui([email protected]) ; Xiong, Jie([email protected]) ; Zhu, Jiaming([email protected])
发表期刊JOURNAL OF MATERIALS SCIENCE
2024-09-01
卷号59期号:33页码:15727-15737
ISSN0022-2461
摘要Phase-field modeling (PFM) is a powerful but computationally expensive technique for simulating three-dimensional (3D) microstructure evolutions. Very recently, integrating machine learning into phase-field simulations provides a promising way to reduce calculation time remarkably. In this study, we propose a deep learning model that combines a convolutional autoencoder with a deep operator network to predict 3D microstructure evolution by using 2D slices of the 3D system. It is found that the deep learning model can shorten the calculation time from 37 min to 3 s after the initial training, while skipping 5-time steps, and reduce the phase-field simulation time by 31% in entire calculation of the evolution process. Interestingly, this model achieves good accuracy in predicting 3D microstructures by utilizing only 2D information. This work demonstrates the efficiency of machine learning in accelerating phase-field simulations while maintaining high accuracy and promotes the application of PFM in fundamental studies.
DOI10.1007/s10853-024-10118-4
收录类别SCI ; EI
语种英语
WOS记录号WOS:001297590500002
关键词[WOS]ALLOYS ; MODEL ; CAHN ; RECRYSTALLIZATION ; APPROXIMATION ; NETWORK
WOS研究方向Materials Science
WOS类目Materials Science, Multidisciplinary
资助项目National Natural Science Foundation of China[12372152] ; National Natural Science Foundation of China[52122408] ; National Natural Science Foundation of China[52071023] ; National Natural Science Foundation of China[12072179] ; Qilu Young Talent Program of Shandong University, Zhejiang Lab Open Research Project[K2022PE0AB05] ; Shandong Provincial Natural Science Foundation[ZR2023MA058] ; Guangdong Basic and Applied Basic Research Foundation[2023A1515011819] ; Guangdong Basic and Applied Basic Research Foundation[2024A1515012469]
项目资助者National Natural Science Foundation of China ; Qilu Young Talent Program of Shandong University, Zhejiang Lab Open Research Project ; Shandong Provincial Natural Science Foundation ; Guangdong Basic and Applied Basic Research Foundation
论文分区二类
力学所作者排名3
RpAuthorWu, Honghui ; Xiong, Jie ; Zhu, Jiaming
引用统计
文献类型期刊论文
条目标识符http://dspace.imech.ac.cn/handle/311007/96385
专题非线性力学国家重点实验室
作者单位1.Shandong Univ, Sch Civil Engn, Jinan 250061, Peoples R China;
2.Shandong Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China;
3.Univ Sci & Technol Beijing, Inst Carbon Neutral, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China;
4.Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China;
5.Liaoning Acad Mat, Inst Mat Intelligent Technol, Shenyang 110004, Peoples R China;
6.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Zhou, Xuewei,Sun, Sheng,Cai SL,et al. Accelerating three-dimensional phase-field simulations via deep learning approaches[J]. JOURNAL OF MATERIALS SCIENCE,2024,59,33,:15727-15737.Rp_Au:Wu, Honghui, Xiong, Jie, Zhu, Jiaming
APA Zhou, Xuewei.,Sun, Sheng.,蔡松林.,Chen, Gongyu.,Wu, Honghui.,...&Zhu, Jiaming.(2024).Accelerating three-dimensional phase-field simulations via deep learning approaches.JOURNAL OF MATERIALS SCIENCE,59(33),15727-15737.
MLA Zhou, Xuewei,et al."Accelerating three-dimensional phase-field simulations via deep learning approaches".JOURNAL OF MATERIALS SCIENCE 59.33(2024):15727-15737.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
Lanfanshu学术
Lanfanshu学术中相似的文章
[Zhou, Xuewei]的文章
[Sun, Sheng]的文章
[蔡松林]的文章
百度学术
百度学术中相似的文章
[Zhou, Xuewei]的文章
[Sun, Sheng]的文章
[蔡松林]的文章
必应学术
必应学术中相似的文章
[Zhou, Xuewei]的文章
[Sun, Sheng]的文章
[蔡松林]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。