IMECH-IR  > 非线性力学国家重点实验室
Fracture mechanics of bi-material lattice metamaterials
Song, Zhaoqiang1; Wu, Kaijin2; Wang, Zewen2; He, Linghui2; Ni Y(倪勇)2,3
通讯作者Song, Zhaoqiang([email protected]) ; Ni, Yong([email protected])
发表期刊JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS
2024-11-01
卷号192页码:19
ISSN0022-5096
摘要The advent of additive manufacturing technology empowers precise control of multi-material components or specific defects in lightweight lattice metamaterials, however, fracture mechanics and toughening design strategies in such metamaterials remain enigmatic. By incorporating theoretical analysis, numerical simulation, and experimental investigation, our study reveals that stretch-bend synergistic strut deformations caused by bi-material components or topology defects contribute notably tougher lattice structures surpassing its ideal single-material lattices. A peak fracture energy at a critical modulus ratio was found in a designed bi-material lattice composed of triangular soft struts and hexagonal stiff struts, which originates from the shift of fracture modes at crack tip from strut bending to stretching dominated failure modes as the modulus of soft struts increases, where the compromise in competition between bending-enhanced and stretching-weakened energy dissipations of struts deformations results in the maximized fracture energy. A parametric design protocol was proposed to optimize fracture energy of bi-material lattices through tuning the modulus ratio and relative density. Furthermore, the concept of stretch-bend synergistic toughening can also be applied to make tougher single-material lattices with specific topological defects. Our findings not only provide physical insights into directing crack propagation but also provide quantitative guidance to optimize fracture resistance within low-density tough lattice metamaterials.
关键词Bi-material lattice metamaterials Fracture energy Toughening mechanism Stretch-bend synergism Additive manufacturing
DOI10.1016/j.jmps.2024.105835
收录类别SCI ; EI
语种英语
WOS记录号WOS:001315826400001
关键词[WOS]DUCTILE TRANSITION ; BRITTLE
WOS研究方向Materials Science ; Mechanics ; Physics
WOS类目Materials Science, Multidisciplinary ; Mechanics ; Physics, Condensed Matter
资助项目National Key Research and Development Program of China[2022YFA1203602] ; National Natural Science Foundation of China[12025206] ; National Natural Science Foundation of China[12202433] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB0620101] ; USTC Research Funds of the Double First-Class Initiative[YD2090002010]
项目资助者National Key Research and Development Program of China ; National Natural Science Foundation of China ; Strategic Priority Research Program of the Chinese Academy of Sciences ; USTC Research Funds of the Double First-Class Initiative
论文分区一类/力学重要期刊
力学所作者排名1
RpAuthorSong, Zhaoqiang ; Ni, Yong
引用统计
文献类型期刊论文
条目标识符http://dspace.imech.ac.cn/handle/311007/96704
专题非线性力学国家重点实验室
作者单位1.Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA;
2.Univ Sci & Technol China, Dept Modern Mech, CAS Key Lab Mech Behav & Design Mat, Hefei 230026, Anhui, Peoples R China;
3.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, 15 Beisihuan West Rd, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Song, Zhaoqiang,Wu, Kaijin,Wang, Zewen,et al. Fracture mechanics of bi-material lattice metamaterials[J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS,2024,192:19.Rp_Au:Song, Zhaoqiang, Ni, Yong
APA Song, Zhaoqiang,Wu, Kaijin,Wang, Zewen,He, Linghui,&倪勇.(2024).Fracture mechanics of bi-material lattice metamaterials.JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS,192,19.
MLA Song, Zhaoqiang,et al."Fracture mechanics of bi-material lattice metamaterials".JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 192(2024):19.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
Lanfanshu学术
Lanfanshu学术中相似的文章
[Song, Zhaoqiang]的文章
[Wu, Kaijin]的文章
[Wang, Zewen]的文章
百度学术
百度学术中相似的文章
[Song, Zhaoqiang]的文章
[Wu, Kaijin]的文章
[Wang, Zewen]的文章
必应学术
必应学术中相似的文章
[Song, Zhaoqiang]的文章
[Wu, Kaijin]的文章
[Wang, Zewen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。