×
验证码:
换一张
Forgotten Password?
Stay signed in
China Science and Technology Network Pass Registration
×
China Science and Technology Network Pass Registration
Log In
Chinese
|
English
中国科学院力学研究所机构知识库
Knowledge Management System of Institue of Mechanics, CAS
Log In
Register
ALL
ORCID
Title
Creator
Thesis Advisor
Keyword
Document Type
Source Publication
Publisher
Date Issued
Date Accessioned
Indexed By
Funding Project
DOI
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
Key Labora... [6]
Creator
许盛峰 [6]
孙振旭 [5]
杨国伟 [5]
郭迪龙 [5]
闫畅 [3]
鞠胜军 [3]
More...
Document Type
Journal ar... [5]
Thesis [1]
Date Issued
2024 [2]
2023 [3]
2022 [1]
Language
英语 [5]
中文 [1]
Source Publication
PHYSICS OF... [2]
ACTA MECHA... [1]
APPLIED EN... [1]
ENGINEERIN... [1]
Indexed By
SCI [5]
EI [4]
CSCD [1]
Funding Project
China Nati... [1]
Chinese Ac... [1]
German Aca... [1]
National K... [1]
Youth Inno... [1]
Funding Organization
National N... [2]
China Nati... [1]
China Nati... [1]
Chinese Ac... [1]
German Aca... [1]
Internatio... [1]
More...
Thesis Advisor
孙振旭 [1]
×
Knowledge Map
IMECH-IR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-6 of 6
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Issue Date Ascending
Issue Date Descending
A framework of data assimilation for wind flow fields by physics-informed neural networks
期刊论文
APPLIED ENERGY, 2024, 卷号: 371, 页码: 18./通讯作者:Sun, Zhenxu
Authors:
Yan C(闫畅)
;
Xu SF(许盛峰)
;
Sun ZX(孙振旭)
;
Lutz, Thorsten
;
Guo DL(郭迪龙)
;
Yang GW(杨国伟)
Favorite
  |  
View/Download:42/0
  |  
Submit date:2024/11/22
Data assimilation
Wind field reconstruction
Physics-informed deep learning
基于融合物理神经网络的稀疏数据挖掘应用及算法研究
学位论文
硕士论文,北京: 中国科学院大学, 2024
Authors:
许盛峰
Adobe PDF(22342Kb)
  |  
Favorite
  |  
View/Download:262/21
  |  
Submit date:2024/06/04
融合物理神经网络,物理信息神经网络,流场重构,稀疏数据挖掘,并行计算,数据标准化
Spatiotemporal parallel physics-informed neural networks: A framework to solve inverse problems in fluid mechanics
期刊论文
PHYSICS OF FLUIDS, 2023, 卷号: 35, 期号: 6, 页码: 65141./通讯作者:Sun, ZX (corresponding author), Chinese Acad Sci, Inst Mech, Key Lab Mech Fluid Solid Coupling Syst, Beijing 100190, Peoples R China.
Authors:
Xu SF(许盛峰)
;
Yan C(闫畅)
;
Zhang, Guangtao
;
Sun ZX(孙振旭)
;
Huang RF(黄仁芳)
;
Ju SJ(鞠胜军)
;
Guo DL(郭迪龙)
;
Yang GW(杨国伟)
Adobe PDF(8047Kb)
  |  
Favorite
  |  
View/Download:202/53
  |  
Submit date:2023/09/05
Exploring hidden flow structures from sparse data through deep learning strengthened proper orthogonal decomposition
期刊论文
PHYSICS OF FLUIDS, 2023, 卷号: 35, 期号: 3, 页码: 37119./通讯作者:Sun, ZX (corresponding author), Chinese Acad Sci, Inst Mech, Key Lab Mech Fluid Solid Coupling Syst, Beijing 100190, Peoples R China.
Authors:
Yan C(闫畅)
;
Xu SF(许盛峰)
;
Sun ZX(孙振旭)
;
Guo DL(郭迪龙)
;
Ju SJ(鞠胜军)
;
Huang RF(黄仁芳)
;
Yang GW(杨国伟)
Adobe PDF(11492Kb)
  |  
Favorite
  |  
View/Download:234/61
  |  
Submit date:2023/04/20
A practical approach to flow field reconstruction with sparse or incomplete data through physics informed neural network
期刊论文
ACTA MECHANICA SINICA, 2023, 卷号: 39, 期号: 3, 页码: 322302./通讯作者:Sun, ZX, Huang, RF (corresponding author), Chinese Acad Sci, Inst Mech, Key Lab Mech Fluid Solid Coupling Syst, Beijing 100190, Peoples R China.
Authors:
Xu SF(许盛峰)
;
Sun ZX(孙振旭)
;
Huang RF(黄仁芳)
;
Guo DL(郭迪龙)
;
Yang GW(杨国伟)
;
Ju SJ(鞠胜军)
Adobe PDF(4793Kb)
  |  
Favorite
  |  
View/Download:165/51
  |  
Submit date:2023/04/20
Physics informed neural network
Flow field reconstruction
Particle image velocimetry
Cosine annealing algorithm
Experimental fluid dynamics
Data-driven rapid prediction model for aerodynamic force of high-speed train with arbitrary streamlined head
期刊论文
ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2022, 卷号: 16, 期号: 1, 页码: 2190-2205./通讯作者:Sun, Zhenxu
Authors:
Chen, Dawei
;
Sun ZX(孙振旭)
;
Yao, Shuanbao
;
Xu SF(许盛峰)
;
Yin B(银波)
;
Guo DL(郭迪龙)
;
Yang GW(杨国伟)
;
Ding, Sansan
Adobe PDF(2791Kb)
  |  
Favorite
  |  
View/Download:344/85
  |  
Submit date:2022/12/20
Aerodynamic force
inverse design
high-speed train
SVM
numerical simulation
wind tunnel test