×
验证码:
换一张
Forgotten Password?
Stay signed in
China Science and Technology Network Pass Registration
×
China Science and Technology Network Pass Registration
Log In
Chinese
|
English
中国科学院力学研究所机构知识库
Knowledge Management System of Institue of Mechanics, CAS
Log In
Register
ALL
ORCID
Title
Creator
Thesis Advisor
Keyword
Document Type
Source Publication
Publisher
Date Issued
Date Accessioned
Indexed By
Funding Project
DOI
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
Key Labora... [3]
State Key ... [1]
State Key ... [1]
Creator
黄仁芳 [2]
Jiang, Xia... [1]
Mou JG [1]
Wu, Songta... [1]
Xu, Fengya... [1]
Yan, Xunsh... [1]
More...
Document Type
Journal ar... [5]
Date Issued
2024 [2]
2023 [2]
2020 [1]
Language
英语 [5]
Source Publication
ACTA MECHA... [1]
APPLIED MA... [1]
COMPUTER M... [1]
Energy [1]
JOURNAL OF... [1]
Indexed By
EI [5]
SCI [5]
CSCD [2]
Funding Project
National N... [1]
National N... [1]
Strategic ... [1]
Youth Inno... [1]
Funding Organization
Developmen... [1]
National N... [1]
National N... [1]
National N... [1]
National N... [1]
Strategic ... [1]
More...
Thesis Advisor
×
Knowledge Map
IMECH-IR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-5 of 5
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Issue Date Ascending
Issue Date Descending
AsPINN: Adaptive symmetry-recomposition physics-informed neural networks
期刊论文
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 卷号: 432, 页码: 117405./通讯作者:刘洋,闫循石
Authors:
Liu ZT(刘子提)
;
Liu Y(刘洋)
;
Yan, Xunshi
;
Liu W(刘文)
;
Guo SQ(郭帅旗)
;
Zhang CA(张陈安)
Favorite
  |  
View/Download:41/0
  |  
Submit date:2024/11/01
Network structure
Parameter-sharing
Feature-enhanced physics-informed neural
networks
Symmetry decomposition
Chien-physics-informed neural networks for solving singularly perturbed boundary-layer problems
期刊论文
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2024, 卷号: 45, 期号: 9, 页码: 1467-1480./通讯作者:Zhang, Lei
Authors:
Wang L(王笼)
;
Zhang L(张磊)
;
He GW(何国威)
Favorite
  |  
View/Download:54/0
  |  
Submit date:2024/10/08
physics-informed neural network (PINN)
singular perturbation
boundary-layer problem
composite asymptotic expansion
O302
Rapid evaluation of capillary pressure and relative permeability for oil-water flow in tight sandstone based on a physics-informed neural network
期刊论文
JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY, 2023./通讯作者:Lin, M (corresponding author), Chinese Acad Sci, Inst Mech, Key Lab Mech Fluid Solid Coupling Syst, Beijing 100190, Peoples R China., Lin, M (corresponding author), Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100190, Peoples R China., Wu, ST (corresponding author), PetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China.
Authors:
Ji LL(姬莉莉)
;
Xu, Fengyang
;
Lin M(林缅)
;
Jiang WB(江文滨)
;
Cao GH(曹高辉)
;
Wu, Songtao
;
Jiang, Xiaohua
Adobe PDF(7570Kb)
  |  
Favorite
  |  
View/Download:181/46
  |  
Submit date:2023/09/05
Two-phase flow
Capillary pressure curve
Relative permeability curve
Tight sandstone
Physics-informed neural network
A practical approach to flow field reconstruction with sparse or incomplete data through physics informed neural network
期刊论文
ACTA MECHANICA SINICA, 2023, 卷号: 39, 期号: 3, 页码: 322302./通讯作者:Sun, ZX, Huang, RF (corresponding author), Chinese Acad Sci, Inst Mech, Key Lab Mech Fluid Solid Coupling Syst, Beijing 100190, Peoples R China.
Authors:
Xu SF(许盛峰)
;
Sun ZX(孙振旭)
;
Huang RF(黄仁芳)
;
Guo DL(郭迪龙)
;
Yang GW(杨国伟)
;
Ju SJ(鞠胜军)
Adobe PDF(4793Kb)
  |  
Favorite
  |  
View/Download:167/52
  |  
Submit date:2023/04/20
Physics informed neural network
Flow field reconstruction
Particle image velocimetry
Cosine annealing algorithm
Experimental fluid dynamics
Energy performance prediction of the centrifugal pumps by using a hybrid neural network
期刊论文
Energy, 2020, 卷号: 213, 页码: 119005./通讯作者:Peijian Zhou, Yiwei Wang
Authors:
Huang RF(黄仁芳)
;
Zhang Z(张珍)
;
Zhang W
;
Mou JG
;
Zhou PJ
;
Wang YW(王一伟)
Adobe PDF(4596Kb)
  |  
Favorite
  |  
View/Download:453/190
  |  
Submit date:2021/01/29
Centrifugal pump
Energy performance
Loss model
Physics-informed neural network